Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Minocycline inhibits nerve cell apoptosis caused by intracerebral hemorrhage in young mice via TRAIL signaling pathway

Wei Wang, Xing Liu, Wenjing Mao, Yan Wang

Department of Neurology, The Affiliated Hospital of North China University of Science and Technology, Tangshan City, Hebei, China;

For correspondence:-  Yan Wang   Email: lrjwy916@163.com   Tel:+863153726564

Accepted: 14 February 2022        Published: 31 March 2022

Citation: Wang W, Liu X, Mao W, Wang Y. Minocycline inhibits nerve cell apoptosis caused by intracerebral hemorrhage in young mice via TRAIL signaling pathway. Trop J Pharm Res 2022; 21(3):521-527 doi: 10.4314/tjpr.v21i3.10

© 2022 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the influence of minocycline on nerve cell apoptosis caused by intracerebral hemorrhage (ICH) in young mouse model, and the mechanism of action involved.
Methods: C57BL/6 mice were divided into control group, ICH group and minocycline treatment group (MC group, 25 mg/kg). Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was conducted to determine nerve cell apoptosis in the brain tissues. The expression levels of genes and proteins related to apoptosis and TRAIL signaling pathway were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.
Results: The levels of Glu, Cr, Na+, IL-6, IL-1β and TNF-β were significantly increased in ICH group, and the content of K+ was significantly raised in MC group (p < 0.05). TUNEL staining showed that there were more apoptotic cells, dominated by glial cells in ICH group, and fewer apoptotic cells in MC group. Gene assay results indicate that ICH group exhibited markedly raised mRNA levels of caspase-3, TNF-β and TRAIL1, as well as lowered levels of B-cell lymphoma-2 (Bcl-2) (p < 0.05). The results of protein assay showed that the protein levels of caspase-3 and TRAIL1 rose while that of Bcl-2 declined significantly in ICH group. However, the expression trends of the genes and proteins in MC group were the opposite of those in the ICH group.
Conclusion: Minocycline inhibits nerve cell apoptosis caused by ICH in the young mouse model by repressing the expression of the TRAIL signaling pathway. The findings may provide new insight into the treatment of ICH.

Keywords: Minocycline, TRAIL signaling pathway, Intracerebral hemorrhage, Nerve cells, Apoptosis, Inflammatory responses

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates